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Crystal structure data are of fundamental importance in a wide spectrum of scientific activities. This tutorial

review summarises the principal application areas, so far, for the data from more than 300,000 crystal

structures of small organic and metal-organic compounds that are stored in the Cambridge Structural Database

(CSD). Direct use of the accumulated data is valuable in establishing standard molecular dimensions,

determining conformational preferences and in the study of intermolecular interactions, all of which are crucial

in structural chemistry and rational drug design. More recently, information derived from the CSD has been

used to construct two dynamic libraries of structural knowledge: Mogul, which stores intramolecular

information, and IsoStar, which stores information about intermolecular interactions. These electronic

libraries provide information ‘‘at the touch of a button’’. In their turn, the libraries also serve as sources

of structural knowledge for applications software that address specific problems in small-molecule and

biological chemistry.

1 Introduction

Crystal structure analyses are remarkable for the richness of
information that they provide. Because this information yields
both the geometric structure of a molecule and also charac-
terises the nature and geometry of its interactions with other
molecules and ions, crystal structure data are crucially
important to a very wide range of scientific activities. Examples
include: (a) structural and supramolecular chemistry, (b)
conformational analysis and the prediction of protein–ligand
interactions – both vital components of paradigms for rational
drug design, and (c) crystal engineering, crystal growth, crystal
structure prediction and polymorphism – all of which are
important in drug development and materials design. Since the
late 1960s, the results of published crystal structure analyses
have been collected in five databases which together cover the
complete spectrum of chemical compounds.

This review concentrates on the scientific applications of the

Cambridge Structural Database (CSD) of small organic and
metal-organic molecules,1,2 and a principal purpose is to
illustrate the scientific value of analysing the crystallographic
results for many chemical structures or substructures taken
together. Techniques for data visualisation and data analysis
then permit, for example: the determination of mean values for
geometrical parameters, the observation of preferred con-
formations or coordination sphere geometries, the mapping
of their interconversion pathways, and the observation and
analysis of the intermolecular interactions that are responsible
for molecular aggregation and crystal growth. Thus, we des-
cribe (a) how the CSD can be used for basic research in some of
the areas listed above, (b) how CSD data can be converted into
rapidly accessible electronic libraries of structural knowledge,
and (c) how these libraries can, in their turn, be used as
knowledge engines that underpin further software applications
designed to solve problems in structural chemistry, rational
drug design and crystallography.
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2 The Cambridge Structural Database (CSD) and
the CSD System1,2

Compilation of the CSD began in 1965, at a time when less
than 1000 structures were published annually worldwide. The
aim was to record the experimental results of each analysis: cell
dimensions, space group and atomic coordinate data, as well as
bibliographic and chemical information. In 2003, the CSD
archived its 300,000th structure, and its current growth rate is
well in excess of 25,000 structures per year. The information
content of a typical database entry (crystal structure) is
illustrated in Fig. 1. Some 99% of CSD entries are abstracted
from the published literature, with the remainder being
deposited as Private Communications to the CSD. All data
undergo checks for accuracy and internal consistency before
being archived to the master database.

The complete CSD System comprises the database itself
together with software tools for searching and visualising
database entries, and for analysing structural information.

ConQuest searches the CSD via queries based on text,
chemical and numerical fields. Substructure searches of the 2D
chemical structural diagrams (Fig. 1b) are the most important
search mechanism. Queries are entered graphically, and can be
embellished with 3D geometrical constraints, e.g. to locate
specific conformations or stereochemistries, or specific phar-
macophoric patterns. ConQuest will also search for non-
bonded interactions (intermolecular or intramolecular) using
geometrical constraints on, e.g., hydrogen-bond geometry etc.
The software will tabulate user-specified geometrical and
crystallographic data for each substructure located in a
search. Fig. 2 shows a ConQuest search query that will
locate hydrogen bonds involving QA–H donors (QA ~ N or
O) and S atoms in (R1,R2)CLS substructures, using numerical
criteria to define the limiting H-bond geometry. Geometrical

descriptors for each substructure retrieved from the CSD can
also be generated, and here the H…S distance and the CLS…H
and [N or O]–H…S angles were output.

Mercury provides both general and advanced functionality
for viewing 3D molecular and crystal structures, including the
display of chemical bond types on 3D images (see e.g. Fig. 1c).
Important features of Mercury are its ability to locate, build
and display networks of interactions (Fig. 3a), e.g. hydrogen
bonds, short non-bonded contacts or user-defined contact
types, and to display slices through crystals as an aid to the
rationalisation of crystal morphology and crystal growth
(Fig. 3b).

Vista creates a spreadsheet of geometrical and crystal-
lographic data generated by ConQuest. Vista will generate
histograms and scattergrams (Cartesian and polar) for para-
meter distributions, and provides simple and advanced
statistical functionality for data analysis. Fig. 4 shows (a) the
histogram of H…S distances and (b) the scatterplot of H…S
distance vs. [N or O]–H…S angle for the hits resulting from the
ConQuest search of Fig. 2. These results confirm the H-bond
acceptor ability of the thione-S (see Section 5.1 below) and show
the commonly observed linear relationship between bond length
(bond strength) and H-bond directionality at the donor-H.

3 Research applications, statistical methods and
structure correlation

3.1 Overview, reviews and the CCDC WebCite database

The CSD System has been used for basic research since the first
versions became available in the mid-1970s. These early
research activities demonstrated the importance of statistical
and graphical methods in the analysis of large volumes of
numerical (geometrical) data,3 and gave rise to the principle of

Fig. 1 Schematic view of the information content of a Cambridge Structural Database entry: (a) bibliographic, chemical and crystallographic text,
(b) 2D chemical structural formula (chemical connectivity), together with (c) 3D molecular structure, and (d) 3D crystal structure derived from
stored atomic coordinates and crystal data.
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structure correlation, enunciated by Bürgi and Dunitz.4,5 Since
that time, nearly 1000 CSD-based research papers have
appeared in the literature, together with reviews of specific
research areas and a number of monographs in which results
obtained from the CSD have played a major role. Amongst
these reviews, the two-volume book Structure Correlation5 of
1994 is the most comprehensive. Other more recent material is
cited in Refs. 6, 7 and 8. At the same time, the CCDC has
maintained its own bibliographic database of CSD-based
research publications, including brief synopses of each applica-
tion. This database is kept as comprehensive as possible and
searchable access is freely provided via the WebCite section of
the CCDC Website at www.ccdc.cam.ac.uk.

3.2 Statistical and graphical methods3

A number of these techniques are embodied in the Vista
program noted above, or are available in many external
software packages. Of particular importance are: (a) descrip-
tive statistics (mean, median and standard deviation) for a
distribution of, e.g., a specific bond length observed in many
crystal structures; (b) parametric and non-parametric tests to
assess the significance of differences between means; (c) the use
of covariance, correlation and regression to determine the
extent and nature of any relationship between pairs of para-
meters; and (d) multivariate methods, such as principal
components analysis and cluster analysis. The latter are appro-
priate for structural problems which require the analysis of
three or more parameters for each substructure retrieved from
the CSD, e.g. the analysis of conformational preferences of
n-membered rings, where each conformer is described by n
torsion angles, or the analysis of metal coordination spheres,
where each sphere is characterised by the [n(n 2 1)]/2 L–M–L
valence angles in an MLn species.

3.3 The principle of structure correlation

During the late 1970s and 1980s, Dunitz, Bürgi and co-workers
enunciated the principle of structure–structure correlation4,5

which underpinned their classic studies of reaction pathways
in a series of aminoketones located using the CSD. In the

Bürgi–Dunitz hypothesis, the static distortions exhibited by a
specific molecular fragment in a wide variety of crystalline
environments are assumed to map the distortions that the
fragment would undergo along a reaction or interconversion
pathway, i.e. the various static fragments are considered to
form a series of structural ‘snapshots’ along the pathway,
and the observed structures tend to concentrate in low lying
regions of the potential energy hypersurface. This important
principle is exemplified and illustrated elsewhere in this review.

4 Intramolecular aspects of CSD-based research

4.1 Mean molecular dimensions

Structural information derived from crystal structure data has
played the key role in the systematisation of structural
chemistry since the pioneering work of Pauling in the 1930s.
A simple and obvious use of CSD data has been to generate
mean values for standard geometrical parameters, such as bond
lengths and valence angles, to act as benchmarks against which
new data may be compared, or to act as restraints during the
refinement of novel structures. Two major compilations of
mean bond lengths9 were generated during the late 1980s for
organic molecules,9a and for metal-organic complexes of the
d- and f-block metals.9b Bond length distributions for more
than 1000 chemical bond types were generated from the CSD,
outliers were examined, and the distributions were charac-
terised via the descriptive statistics reviewed in Section 3.2.
Another notable compilation is that of Engh and Huber,10 who
derived mean bond lengths and valence angles for peptidic
structures in the CSD, basing their classification on 31 C, N, O
atom types that are most appropriate to the protein environ-
ment. These data continue to be used extensively in the deter-
mination, refinement and validation of novel protein crystal
structures, and are built into many key computer programs in
structural biology.

4.2 Conformational analysis

The generation of torsion angle distributions to determine
conformational preferences about single rotatable bonds, or

Fig. 2 Screenshot of ConQuest search query to locate CLS…H–QA [QA ~ N or O] hydrogen bonds within an S…H distance limit of 2.9 Å.
Further graphical input permits the definition of other geometrical parameters for output or use as search constraints, as noted in the text.
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for complete ring systems, is one of the most common applica-
tions of the CSD, particularly in molecular modelling6 and in
structure determination from powder diffraction data.11

Conformations adopted in individual crystal structures will
be affected by different crystal field environments, and cannot
be assumed to represent either the global minimum energy
geometry or the geometry adopted when a molecule binds to a
protein. However, if a specific molecular substructure contain-
ing a rotatable bond is observed in a series of crystal structures,
it is likely that the more strained higher energy conformations
will be observed less often than relatively unstrained lower
energy geometries, in accordance with the structure correlation
principle. Thus, the observed distribution of torsion angles
around a rotatable bond should reflect the potential energy
curve for rotation about that bond.

This hypothesis was tested12 for twelve common substruc-
tural fragments by comparing torsion angle distributions from
the CSD with those obtained from ab initio molecular orbital
calculations. Each substructure was able to adopt two
conformers, anti and gauche, and the qualitative complemen-
tarity of the experimental and calculated profiles was striking,
with the natural logarithm of the relative frequencies of the
two conformers in crystal structures being linearly related
to their ab initio calculated energy differences. While systematic
packing effects can cause substantial deviations from this

Boltzmann-like result,6 the overall conclusion12 was that (a)
torsion angles with strain energies of w1 kcal mol21 are rarely
observed in crystal structures, and (b) crystal structure
conformations are indeed good guides to conformational
preferences in solution. Indeed, Taylor6 presents arguments
based on CSD observations which indicate that crystal struc-
ture conformations are better guides to in vivo solution con-
formations than those derived from in vacuo ab initio
calculations. This conclusion is borne out by a study of the
conformations of synthetic ligands13 in the CSD and in protein-
bound complexes retrieved from the Protein Data Bank.

Further evidence supporting the basic tenet of the structure
correlation principle – that crystal conformations tend to cluster
in low energy regions of the potential energy hypersurface – arises
from conformational studies on a variety of multivariate

Fig. 3 Mercury plots of (a) an extended hydrogen bonded network,
and (b) a slice through a crystal structure.

Fig. 4 Vista plots of geometrical data retrieved from the CSD by the
ConQuest query of Fig. 2: (a) histogram of the S…H distance, and
(b) scatterplot of the S…H distance vs. the [N or O]–H…S angle.
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systems. Thus, the CSD has been used14 to study the
conformational variations in benzophenones by generating a
scatterplot (Fig. 5) of the two torsion angles (TOR1 and

TOR2) that quantify the conformations of the two independent
phenyl rings with respect to the wCLO group. In the original
paper,14 Fig. 5 is superimposed on the contoured calculated
potential energy hypersurface which has energy minima at
TOR1, TOR2 ~ 130, 230u and its symmetry equivalents, and
where these global minima are connected by low energy valleys
that correspond to the conformational interconversion path-
ways depicted so clearly in Fig. 5. A considerable body of
work, reviewed elsewhere,7 has also been carried out on the
detection of conformational preferences for ring systems using
the multivariate analysis techniques of principal components
analysis and cluster analysis. Again, there is close comple-
mentarity between the conformational mappings and cluster-
ings generated from crystal structure data and those generated
by minimum energy calculations.

4.3 Structure–property relationships

From the mid-1980s, the principle of structure–structure
correlation was extended to structure–property relationships,
through the work of Kirby and others on structure–reactivity
correlations. These crystallographic approaches to transition
state structure have been extensively reviewed by Kirby,15 and
are exemplified by the study of C–O bond length variations in
a series of axial tetrahydropyranyl acetals (I, Fig. 6), in which
C–OR bond breaking should be highly dependent on the
orientations of the O lone pairs: optimum ns-s* (C–OR)
overlap stabilises both the ground state axial conformation and
the oxocarbocation (II, Fig. 6). This orbital overlap also leads
to hydrolysis of these compounds, and given the high degree of
stereochemical control (I A II, Fig. 6), a relationship was
sought between the length of the ground state C–OR bond and
the rate at which it was broken. Since chemical evidence had
shown that the pKa of the conjugate acid of the leaving group

(ROH) was related to reactivity, plots were made of the exo and
endo C–O bond lengths in a variety of axial tetrahydropyranyls.
Fig. 6 shows the respective negative and positive linear correla-
tions, which show an increasing divergence between the two
C–O distances for the better leaving groups, as might be
expected from the reaction.

4.4 Metal coordination sphere geometries and their
interconversions

Crystallography is the method of choice for the characterisa-
tion of novel metal-organic species, and over 50% of CSD
entries contain a transition metal. The CSD therefore contains
a wealth of data that are relevant to systematic studies in
molecular inorganic chemistry, and these have recently been
reviewed.8 A number of these applications, e.g. the determina-
tion of typical molecular dimensions, conformational analyses,
and studies of reaction pathways and intermolecular inter-
actions, have their organic parallels. However, studies of
metal–ligand bonding, catalytic systems, secondary bonding,
and aurophilic and agostic interactions are specifically metal-
organic in nature.

Fig. 5 Symmetry-expanded Ramachandran-like plot (after Ref. 14)
of the OLC–Car–Car torsion angles in benzophenone substructures
retrieved from the CSD using ConQuest.

Fig. 6 Relationship between the bond lengths of the endocyclic and
exocyclic C–O bonds at the acetal centres of axial tetrahydropyran
acetals (I), and the pKa of the conjugate acid (ROH) of the leaving
group (II).
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A natural focus of attention is the geometry of metal
coordination spheres, and of their interconversions from one
archetypal geometry to another. An example is provided by a
recent study of 3-coordinate transition metal (Tr) species,16 in
which the TrL3 sphere was characterised using the three L–Tr–
L valence angles. Principal components analysis showed that
the vast majority of such species had a trigonal planar (tp)
geometry, with some deviations towards a Y-shaped geometry
(one angle significantly smaller than 120u due to small-ring
formation involving a pair of ligand atoms). More rare was a
T-shaped geometry with two angles of ca. 90u and one close
to 180u, and it was observed that many of these geometries
occurred in Hg(II) complexes, as illustrated in the principal
components plot of Fig. 7a. This plot also shows a number of

data points (TrL3 substructures) which connect the cluster of
T-shaped geometries with the central tp-cluster. Given the
predominant linear 2-coordination adopted by Hg(II), it is
tempting to speculate that the T-shaped cluster of Fig. 7a,
together with the intermediate geometries that link this cluster
with the tp-cluster, represents snapshots along the minimum
energy pathway for addition of ligand L3 to a 2-coordinate
L1–Hg–L2 centre. This pathway is indeed realised in Fig. 7b by
plotting DNORM against AOPP. DNORM is the normalised
Hg–L3 distance, i.e. d(Hg–L3) – rad(Hg) – rad(L3), in which the
rad are covalent radii (the normalisation is necessary since we
do not know a priori the chemical identity of the generic ligand
atom L3 located in the CSD search). AOPP is the valence angle
L1–Hg–L2 which is opposite to the point of attachment of the
incoming ligand L3. As expected, AOPP is seen to decrease
from 180u (T-shape) to 120u (tp) as DNORM decreases from
the longer Hg–L3 bond distances exhibited in the T-shaped
species.

5 Intermolecular aspects of CSD-based research

A crystal structure is the archetypal supermolecule and crystal
structure analysis is the only experimental technique that
routinely permits direct observation of the intermolecular inter-
actions that control the formation of supramolecular entities.
Thus, the technique reveals the types of interactions that occur,
their geometrical characteristics and their directional prefer-
ences. Such knowledge makes vital contributions to our under-
standing and development of, e.g., supramolecular synthesis,
crystal engineering, protein–ligand interactions, crystal growth,
crystal structure prediction and, of course, in the solution and
validation of novel crystal structures.

The CSD is therefore a major source of knowledge on
intermolecular interactions of all types. The CSD software
(ConQuest) permits graphical encoding (Fig. 2) of search
queries that involve chemical substructures linked via non-
bonded ‘connections’ that are defined in terms of distances
(in Å, or relative to sums of van der Waals radii). Other
geometrical limitations, if known, may also be used in query
definitions. However, crystal structure data can only provide
rather general information about the relative strengths of
non-bonded interactions, and it is now common to combine
CSD studies with calculations of interaction energies carried
out using a variety of ab initio methods. Here, CSD analyses
are used to identify highly populated regions of interaction
space, and the (often computer-intensive) computational
exploration of the potential energy hypersurface is then res-
tricted to these regions.

5.1 Hydrogen bonding

As documented elsewhere6,7 the CSD has been used extensively
in studies of strong hydrogen bonds, particularly those having
N or O as donors and acceptors. Apart from the determination
of H-bond distances and angles, studies have examined (a)
H-bond lone-pair directionality at the acceptor, (b) resonance-
assisted and resonance-induced H-bonds, (c) intramolecular
H-bonds, (d) competition effects in systems having a number of
acceptors and donors, (e) H-bonded patterns and their relative
probabilities of formation, and (f) the role of H-bonds in
polymorphic systems.

CSD analysis is exemplified by a study17 of the resonance-
induced hydrogen bonding of N–H or O–H donors to sulfur
acceptors in (R1R2)CLS systems. The wCLS bond is not a
natural dipole due to the almost equal electronegativities of C
and S, by contrast to the situation in wCLO bonds where the
electronegativity of O makes it a strong acceptor. Nevertheless,
the structure of thiourea is dominated by N–H…SLC(R1R2)
bonding. The CSD analysis17 of all [N or O]–H…SLC(R1R2)

Fig. 7 Analysis of 3-coordinate Hg(II) complexes: (a) principal
components map based on the three L–Hg(II)–L valence angles, and
(b) reaction pathway for addition of L3 to 2-coordinate L1–Hg(II)–L2

species. The parameters DNORM and AOPP are defined in Section
4.4.
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substructures showed that only those systems in which one or
both of R1, R2 were electron-donating substituents, e.g. the
amine groups of thiourea, formed H-bonds. Here, the effective
electronegativity of S is significantly increased by resonance
effects (III, Fig. 8), so that it now becomes an effective
acceptor, and the geometrical distributions shown in Fig. 4a,b
show typical H-bonding behaviour. Importantly also, further
analysis revealed (a) a significant preference for the H-donor to
approach the S acceptor in the wCLS plane, and at a CLS…H
angle (y105u, Fig. 8a) which clearly shows S-lone pair direc-
tionality; and (b) an interaction energy of 220 kJ mol21

computed using intermolecular perturbation theory (IMPT)18

with an O–H donor in the wCLS plane at d(S…H) ~ 2.40 Å
and with a CLS…H angle of 95u (Fig. 8b). This value is
somewhat less attractive than interaction energies computed
for wCLO…H–O bonds (ca. 228 kJ mol21).

One of the major contributions of CSD analysis to H-bond
research has been to establish the existence of a wide range of
weaker hydrogen bonds19 involving: (a) weak donors and
strong acceptors, e.g. C–H…O, C–H…N etc.; (b) strong
donors and weak acceptors, e.g. O,N–H…Cl, O,N–H…p; and
(c) weak donors and weak acceptors, e.g. C–H…Cl, C–H…p.
Of particular importance was the clear identification of short
C–H…O and C–H…N contacts as true hydrogen bonds in the

early 1980s.20 This much cited paper, based on neutron
diffraction studies retrieved from the CSD, finally ended all
speculation as to the nature of these short interactions involv-
ing acidic C–H hydrogens, and put an end to the ‘dark ages’19

that had existed since the late 1960s in which such interactions
had to be described in the literature using the most circumspect
(and often contorted) phraseology that did not include the
words ‘hydrogen bond’!

5.2 Interactions not mediated by hydrogen

A review of supramolecular synthons21 illustrates the structural
importance of a wide range of attractive non-bonded inter-
actions that are not mediated by hydrogen, and notes the value
of CSD analyses in identifying and characterising these inter-
actions. In practice, the combination of CSD analysis and ab
initio calculations has again proved valuable, so that the
relative robustness of these interactions can be compared with
one another and with the more well understood hydrogen
bonded interactions.

The marked tendency of the halogens X ~ Cl, Br, I to form
short contacts to each other and to electronegative N and O
atoms is well known. A combined CSD/IMPT analysis of
C–X…OLCv systems22 showed a marked preference for the

Fig. 8 Directionality of [N or O]–H…SLC(R1,R2) hydrogen bonds at the S-acceptor in thiones: (a) polar histogram of the H…SLC angle, and
(b) interaction energies calculated using the IMPT procedure18 using thiourea and methanol as model molecules, restricting the donor-H to lie in the
thione plane, and varying the H…SLC angle.
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shortest X…O interactions to form along the extension of the
C–X bond and with interaction energies ranging from 27 to
210 kJ mol21 depending on the nature of X and the bonding
environment of OLCv. These energies are comparable to
the strengths of C–H…O hydrogen bonds. By contrast23

C–Cl…Cl–C interactions tend to form with C–Cl…Cl angles
close to 90u, and these two studies together22,23 provide a
picture of Cl as presenting a quadrupolar electrostatic environ-
ment, with an area of electropositive potential pointing
outwards along the extension of the C–Cl bond, and an area
of electronegative potential in directions perpendicular to the
bond. This model is further supported24 by combined CSD and
ab initio results for C–Cl…H–N,O hydrogen bonds and their
much stronger metal-Cl…H–N,O analogues, which are charac-
terised by H…Cl–C and H…Cl-metal angles of ca. 90u–100u.

The importance of group–group interactions has also been
highlighted25a during a CSD analysis designed to locate isosteric
replacements in modelling protein–ligand interactions. A later
paper25b presented an in-depth study of carbonyl–carbonyl
interactions, and showed that dipolar wCLO…OLCv inter-
actions most commonly form in a slightly sheared antiparallel
arrangement having interaction energies of about 220 kJ mol21,
comparable to the energies exhibited by medium-strength
hydrogen bonds, for example the (N,O)–H…S bonds discussed
above. Carbonyl–carbonyl interactions have also been shown
to be significant in stabilising certain protein secondary struc-
ture motifs25c and in stabilising the partially allowed Rama-
chandran conformations of asparagine and aspartic acid.25d

6 Knowledge-based structural libraries derived from
the CSD

The undoubted value of crystallographic data does not
guarantee their widespread use. The advent of the Internet
has revolutionised how people think about information pro-
vision, so that ‘‘answers at the touch of a button’’ is now the
expectation of the day. For a crystallographic database, this is
not so easy. Enthusiasts of the CSD have exploited programs
such as ConQuest to great effect, as the above sections
illustrate, but these programs cannot be mastered without a
certain investment of time and effort: reasonably complex
interfaces have to be learnt, search substructures drawn, results
subjected to statistical analysis, and so on. The problem is
exacerbated by the development of ‘‘high throughput’’ com-
putational chemistry, in which, for example, a molecular
modeller engaged in drug discovery might use a protein–ligand
docking program to predict the binding conformations and
affinities of hundreds of thousands of computer-built mole-
cules. In principle, the CSD contains information to identify
and reject any molecule whose docked conformation is physi-
cally unrealistic, but it is clearly impossible for the necessary
torsion-angle distributions to be generated manually.

These factors have led several groups to derive from the CSD
and other crystallographic databases a number of structural
libraries that capture key information in a form that is easy and
quick to use, either by a human or a client computer program.
These libraries may be divided into two types: those providing
information about intramolecular parameters and those
providing intermolecular data.

6.1 Libraries of intramolecular geometry

One of the best-known structural libraries to be derived from a
crystallographic database is MIMUMBA,26 a collection of 216
torsion-angle distributions obtained by searching the CSD
for common molecular fragments, each containing a single
rotatable bond. The library can be used in conformational
analysis by identifying the rotatable bonds in a molecule of
interest and assigning to them torsion-angle values on the basis

of a best match to the MIMUMBA torsional distributions
(since some of the MIMUMBA molecular fragments are highly
generic, it is invariably possible to find a match). This produces
a list of possible conformations for the molecule as a whole
which can be empirically ranked and subjected to energy
minimisation. Part of the procedure involves converting the
observed torsional distributions into pseudo-energy curves, a
procedure first described by Murray-Rust.27 MIMUMBA was
shown to be successful in finding the experimentally observed
conformations of eight out of nine protein-bound molecules
(ligands) taken from the PDB.

Another library, et28 differs from MIMUMBA in taking
better account of correlations between the torsion angles of
adjacent rotatable bonds. These correlations are often very
strong – witness the large regions of unoccupied space in the
classic Ramachandran plot of amino-acid residue (w,y) values –
and are therefore often effective at identifying combinations of
torsion-angle values that are energetically out of reach. et
contains about 800 substructural fragments, each typically
containing from 1 to 3 variable torsions. A subset of about
18,000 diverse organic molecules from the CSD was used to
identify the conformational ‘‘bins’’ into which each fragment
can fall. For a given bin, information was stored about the
average torsion angle of each rotatable bond in the fragment,
together with its standard deviation. Conformational analysis
for a molecule proceeds by finding all the fragments in the
library that match onto the molecule. Of these, the largest
fragments are chosen, since they will be the ones that capture
best the correlations between adjacent torsions and therefore
restrict conformational space most effectively. Once the com-
plete molecule is matched and possible torsion angles assigned,
the molecular conformations that remain possible are subjected
to bump checking and other tests, leading to a final list of likely
geometries. The methodology was tested against 113 molecules
whose protein-bound conformations have been determined and
deposited in the Protein Data Bank (PDB).29 When et was
used to generate 25 conformations for each ligand, a conforma-
tion within 1.5 Å RMSD of the observed ligand geometry was
found in about 90 of the 113 cases.

Both MIMUMBA and et suffer from the disadvantage that
they are based on ‘‘snapshots’’ of the CSD as it was when the
libraries were developed. A similar complaint can be laid, of
course, against the printed bond-length compilations9 referred
to earlier. With this in mind, the most recently developed
component of the distributed CSD System is a molecular
geometry library, Mogul, that will be continuously updated as
the CSD grows. Mogul is able to read a molecule – submitted
either manually or by another computer program via an
instruction-file interface – and automatically perform sub-
structure searches of the CSD for all the bonds, angles and
acyclic torsions. The crystallographically-determined distribu-
tions of the geometries of these fragments are then returned to the
user or client program. They may then be used, e.g., to check the
dimensions of a computer-generated molecular model.

Rather than doing conventional substructure searching,
which involves atom-by-atom and bond-by-bond comparison
(graph matching) of the query substructure with database
molecules, Mogul works by using ‘‘chemical keys’’. Each frag-
ment (i.e. bond, angle or acyclic torsion) in the query molecule
is assigned a set of key values that collectively describe the
substructural environment of the fragment. For example, two
of the key values used to describe the C–C bond between the
methyl and carboxylic acid groups of ethanoic acid would be
C.4.3 and C.3.0. The first key describes the methyl carbon (a C
atom, bonded to 4 other atoms, of which 3 are hydrogens) and
the second the carboxylic carbon (a C atom bonded to 3 other
atoms, none of which are hydrogens). Other keys would
capture the nature of the atoms in the next bonding shell, and
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the types of the various bonds between the atoms. A search tree
is then traversed to find all fragments in CSD structures that
have identical key values; this is approximately equivalent to
performing a substructure graph-match but is much faster.
Should insufficient hits be obtained, a backtracking algorithm
is combined with similarity calculations to find CSD fragments
with approximately the same key values as the query fragment
(conceptually similar to searching for a substructure contain-
ing one or more variable atom and/or bond types). The
experimentally-determined 3D coordinates of the hits – CSD
structures containing fragments with the same or similar key
values to that of the query – are used to output summary
statistics (mean, sample standard deviation, histograms, etc.)
of the dimension of interest (length if the fragment is a bond;
angle if it is a valence angle or torsion). These may be viewed
graphically or read by an external application. An example
Mogul search display is shown in Fig. 9.

6.2 IsoStar: a library of intermolecular interactions

As mentioned earlier, programs such as ConQuest allow
searches to be performed for intermolecular contacts between
any given pair of groups A and B. By superimposing the A…B
contacts thus found so that the A moieties are overlaid in a
least-squares sense, a three-dimensional scatterplot can be
produced showing the experimental distribution of B (the
‘contact group’) around an average A group (the ‘central
group’). Examples of three such scatterplots are shown in
Fig. 10. The IsoStar library,30 compiled and regularly updated
by CCDC for the last six years, contains over 25,000 different
scatterplots like these, most derived by searching for contacts in
CSD structures but a substantial minority based on protein–
ligand interactions in the PDB.

An IsoStar scatterplot provides two basic types of informa-
tion: where the contact group tends to be positioned around the
central group and how frequently interactions between the two
groups are observed. Fig. 10a, for example, shows that the
carboxylate ion in small-molecule crystal structures from the
CSD prefers to form hydrogen bonds along the oxygen sp2

lone-pair directions (and forms many of them). Fig. 10b shows
that the same geometrical tendency is seen when ligand
carboxylate groups form hydrogen bonds to protein residues
in PDB structures. Fig. 10c shows that, of the two oxygen
atoms in an ester linkage, the carbonyl oxygen commonly
accepts hydrogen bonds but the bridging oxygen almost never
does.

Fig. 10c illustrates a common problem with the ‘‘raw’’
scatterplots from IsoStar: there may be so many observations
that it becomes difficult to see the wood for the trees. In
particular, the large number of O–H…OLC contacts on this
plot makes it impossible to assess whether this type of acceptor
oxygen atom shows the same lone-pair directionality as
observed, for example, with the carboxylate oxygens in
Fig. 10a, b. When using the IsoStar interface, the complexity
of the image can be reduced somewhat by altering distance
limits – for example, showing only those contacts that are much
shorter than the sum of the van der Waals radii of the inter-
acting atoms. This often makes it easier to identify directional
preferences. A neater answer to the problem, however, involves
embedding the plot in a regular three-dimensional grid and
counting the number of contact groups falling in each grid
cube. Contouring on these counts then permits calculation
and display of a surface showing the density distribution of
hydroxyl contacts around the central ester group (Fig. 10d).
This much simpler representation of the data shows clearly
that ester carbonyl oxygens do have the same preference as
carboxylate oxygens for forming hydrogen bonds along lone-
pair directions. Moreover, it now becomes apparent that one
lone pair – anti to the linking oxygen – is favoured over the
other, presumably for steric reasons.

Importantly, the scatterplot data are hyperlinked to the CSD
(or PDB) structures from which the plot was derived. Fig. 11a
shows the scatterplot of O–H contacts around the ethynyl
group. By clicking on the shortest O–H…p contact, the user is
presented with the crystal structure in which that contact was
found (CSD entry BETXAZ,31 Fig. 11b), a structure compris-
ing a tetrameric motif connected by C–H…O and O–H…p
hydrogen bonds. Hyperlinking in this way enables users to gain
insight into the circumstances in which particular interactions
are likely to form. In the present example, the highly hindered
nature of the tertiary alcohol almost certainly prevents the
formation of the …OH…OH… rings or chains that might
normally be expected in an alcohol crystal structure. The
weaker CH…O and OH…p hydrogen bonds may therefore be
presumed to be the best of the options that remain once
…OH…OH… is excluded – and made more attractive than

Fig. 9 Results of a Mogul search for the C(ring)–C(ring)–NLN
torsion fragment in azobenzenes that lack substituents in the ortho
positions. The search was performed (a) by selecting the four atoms
defining the torsion in the query molecule, which came from a crystal
structure. The resulting histogram (b) is produced in less than a second
and shows that the value of the torsion angle in the query molecule
(indicated by the red line) is unusual.
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otherwise might have been expected by the relatively acidic
nature of the acetylenic CH proton.

The IsoStar interface provides browsing facilities by which

users may navigate through the huge array of interactions
contained within the library. While all the examples discussed
above are hydrogen bonds, the library contains many other

Fig. 10 The IsoStar library of intermolecular interactions: (a,b) distribution of N–H and O–H (donor) contact groups around carboxylate central
groups as observed in (a) the CSD and (b) the PDB, and (c,d) the distribution of O–H (donor) contact groups around ester central groups in the CSD
presented as a standard scatterplot (c) and as a contoured density distribution (d).

Fig. 11 The IsoStar library of intermolecular interactions: (a) scatterplot of O–H donors around an acetylenic central group (shorter contacts
shown), and (b) hyperlinking from IsoStar to the CSD for the shortest O–H…p interaction (CSD Reference Code BETXAZ31).
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types of interactions, including hydrophobic contacts and
attractive electrostatic interactions. The strength of the library
is in providing very quick and reliable answers to important but
relatively straightforward questions. Here are some typical
examples. Do organically-bound fluorine atoms accept hydro-
gen bonds? Answer: only rarely. Which is the better acceptor in
an oxazole ring, the nitrogen or oxygen atom? Answer: the
nitrogen. What types of contacts do aromatic sulfur atoms
form? Answer: it depends on the heterocycle – for example,
thiophene sulfurs show somewhat different preferences to
thiadiazole sulfurs. Is there a precedent for a protein trypto-
phan residue accepting an NH…p hydrogen bond from a
bound ligand? Answer: yes. All of these questions could also be
answered by using a program such as ConQuest; but IsoStar
gives answers in seconds rather than minutes.

7 Knowledge-based applications software

So far, this review has focused on the knowledge that may be
gleaned from the CSD by a capable chemist or crystallographer
sitting in front of a computer terminal using software such as
ConQuest, Vista, Mogul or IsoStar. We rely on the CSD to
provide the data, the program to analyse and present it in
useful ways, and the human to interpret it. The theme of this
last section is how crystallographic data can be coupled directly
with a client computer program, so that the human user of the
client program utilises the crystallographic data at second-
hand, without seeing it directly.

7.1 Integration of Mogul into crystallographic software

One of the most obvious uses of Mogul is to check the dimen-
sions of a newly determined or partially refined crystal struc-
ture. Significant discrepancies between the observed bond
lengths and angles of the new structure and the mean values of
the corresponding geometrical distributions in the Mogul
library can then be reviewed. They will indicate either
experimental errors or genuine differences that are chemically
noteworthy. The CRYSTALS package for X-ray structure
refinement has been modified by its authors to use Mogul in
this way.32 The two programs interact directly with each other,
CRYSTALS submitting a crystal structure to Mogul, along
with an instruction file. Mogul performs the required searches
and returns the results to CRYSTALS. Here, they are converted
to z-scores, defined in CRYSTALS as (obs 2 median)/sd, where
obs is the observed value of a dimension in the crystal structure,
median is the median of the matching Mogul distribution,
and sd is the sample standard deviation of that distribution.
Extreme z-scores indicate suspect molecular dimensions.
CRYSTALS will also compute a z-score for each atom,
being the mean of all the bond-length and valence-angle
z-scores in which that atom is involved. Atoms with high
z-scores are thus highlighted as having some problem – for
example, they might have been assigned an incorrect element
type by the crystallographer. The average bond lengths and
angles may also be used by CRYSTALS as chemical restraints
during further refinement of the structure.

7.2 SuperStar: exploring protein–ligand interactions using
IsoStar data

One of the most important uses of crystallographically-derived
intermolecular information is in structure-based drug design,
i.e. the rational design of drugs given the 3D structure of the
target protein binding site. This is because most small mole-
cules that bind to proteins do so non-covalently. Hence, an
ability to predict the non-covalent interactions that are
likely to be favoured in a binding site is essential. Many
different approaches have been taken to this problem. A very
well-known example is the program GRID.33 This uses an

empirical force-field to calculate the energy of interaction
between the protein and a probe (a small functional grouping
such as methyl or carbonyl) positioned at various points in the
binding site. Display of the results as a contoured surface
highlights the ‘‘hot-spots’’ – regions where the protein–probe
interaction is particularly favourable. These, in turn, can be
used to hypothesise pharmacophores (3D arrangements of
functional groups that should interact well with the binding site
and therefore confer binding affinity) for guiding drug design.

Programs like GRID rely heavily on the quality of the
empirical energy expressions used to estimate non-bonded
interaction energies. An alternative knowledge-based approach
is to estimate the probability of an interaction based on how
often it has been observed in crystal structures. IsoStar, of
course, is an ideal source of this type of information. The
program SuperStar34 uses IsoStar to achieve the same end as
GRID, but without the need for empirical energy calculations.

Central to the SuperStar approach is a method for placing
a density surface such as the one shown in Fig. 10d on a
meaningful scale. This can done by considering the parent
IsoStar scatterplot (Fig. 10c) and estimating the density of
contacts that would be expected in the plot if the spatial
distribution of central (ester) and contact (hydroxyl) groups
was entirely random in CSD crystal structures containing both
groups. The expectation density, de, can be computed from:

de ~ Sni(central) . ni(contact)/Vi

where the summation is over all the CSD structures containing
both the central and contact groups, Vi is the unit-cell volume
of the ith such structure, and ni(central) and ni(contact) are the
number of crystallographically-independent central groups and
the total number of contact groups, respectively, in the unit cell
of structure i. The actual density of contact groups in any
region of the scatterplot can be divided by de to yield a
propensity (p). This indicates whether the contact density in
that region is greater (p w 1) or less (p v 1) than would be
expected by chance, and by how much. By implication, regions
of the plot with p w 1 correspond to energetically favourable
positions for the contact group around the central group, and
the greater the propensity, the more favourable the position is
likely to be.

The importance of this scaling process is that it makes it
meaningful to combine information from different IsoStar
scatterplots. This is the foundation of the SuperStar methodo-
logy. The program partitions the protein binding site into its
constituent chemical groupings, the partitioning been done in
such a way that each grouping corresponds to one of the
central groups in the IsoStar library. Given a particular probe
group, it is thus possible to retrieve the scatterplots of the
distributions of the probe groups around all of the chemical
groupings present in the protein binding site. Each IsoStar
scatterplot is overlaid on all parts of the protein binding site
that it matches, converted to a contoured density surface,
and then normalised to a user-selected propensity value. The
separate surfaces can then be combined into an overall
propensity map indicating the regions of the binding cavity
most likely to be favourable for the probe group. Where two
propensity surfaces from different IsoStar scatterplots overlap
they are combined by multiplication. Fig. 12 shows an example
SuperStar surface indicating where OH groups are favoured in
the binding site of L-arabinose binding protein. The structure
is taken from PDB entry 1ABE,35 which contains a bound
L-arabinose ligand. The observed position of the arabinose
is shown in Fig. 12 to illustrate that there is a good corres-
pondence between the observed positions of ligand OH groups
and high-propensity regions of the SuperStar map.

An important question is whether it is meaningful to use
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small-molecule crystal-structure data to predict nonbonded
interactions in protein–ligand complexes. Side-by-side com-
parisons of IsoStar scatterplots based on CSD and PDB data
indicate that the geometries of nonbonded interactions are
similar in small-molecule and protein–ligand crystal structures.
This is supported by calculation of similarity coefficients for 72
pairs of scatterplots, which show that only rarely does a PDB-
based scatterplot differ significantly in shape from its CSD-
based analogue.36 However, early experiments with SuperStar
did highlight an important difference in the frequencies with
which different types of contacts occur in small-molecule and
protein–ligand crystal structures.34 Specifically, hydrophobic
contacts such as CH3

…CH3 occur relatively less often in the
CSD than in the PDB, taking stoichiometric factors into
account. Conversely, contacts between a polar group and a
hydrophobe, such as CH3

…OLC, are relatively more common
in the CSD. A possible explanation is that a major driving
force for protein–ligand binding is the entropic gain resulting
from the displacement of water molecules from protein hydro-
phobic cavities by ligand hydrophobic groups. Most of the
crystals used to obtain structures in the CSD, however, were
probably not grown from aqueous solvent. Thus, it may well
be that there is a smaller free-energy gain from the formation
of hydrophobic contacts in the majority of small-molecule
crystallisations. Whatever the reason, the difference is real and
has to be corrected in order to obtain reasonable results from
SuperStar. In current releases of the program, the correction is
very crude: propensities for hydrophobic contacts are artifi-
cially increased by a constant factor chosen to get the best
predictive reliability. However, the most recent in-house develop-
ment version of the program incorporates a more theoretically
satisfying correction based on substituent octanol–water p
values.

SuperStar was validated on 122 protein–ligand complexes
from the PDB (later validations have used many more

complexes but produced comparable success rates). Each
complex was prepared by removal of the ligand and placement
of hydrogen atoms on the protein residues. Four propensity
maps were then generated for each binding site, using the probe
groups: carbonyl oxygen, –NH3 nitrogen, methyl carbon and
hydroxyl oxygen. Ligands were then placed back into the
binding sites in their experimentally-observed positions. At any
point in space occupied by a ligand atom of the same type as
one of the four probe groups, it was ascertained which of the
probes had the highest SuperStar propensity. If this was the
probe matching the ligand atom, SuperStar was held to have
made a correct prediction. Otherwise, it was incorrect. Having
used four probe atoms, a 25% success rate could be expected at
random; however the actual success rate varied between 68%
and 82%, depending on the solvent accessibility of the ligand
atom (it being harder to predict highly solvent-accessible
positions).

To our knowledge, no systematic comparison has been done
between results obtained using energy-based programs such as
GRID and knowledge-based programs like SuperStar. Anec-
dotal reports indicate that both methodologies give compar-
able overall prediction success rates but may vary in reliability
on any given system. This is to be expected: the programs take
very different approaches and are unlikely to make the same
errors. The use of both energy-based and knowledge-based
methods together is therefore likely to give more robust results
than either on its own.

8 Conclusion

This review has summarised the wide range of scientific
applications of the CSD, involving fundamental direct
applications of the stored data, through the generation of
knowledge-based systems such as Mogul and IsoStar, to the
integration of this knowledge within software applications that

Fig. 12 SuperStar propensity map (OH probe) indicating where OH groups are most likely to bind to L-arabinose binding protein (PDB entry
1ABE35). The observed position of arabinose in the protein–ligand crystal structure is also shown.
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are designed to solve significant problems in structural chemi-
stry and biology. These CSD-related developments have been
catalysed by the very rapid evolution of computer technology
over recent decades, and also by the highly significant con-
tinuous growth of the CSD itself. While small-molecule crystal
structure analysis may now be considered to be a mature
science, itself fuelled by technological advances, the results of
the technique remain a fundamental and lasting resource.
Every crystal structure is valuable, and it is vital to capture as
many structures as possible within the publicly available
databases. It is a major concern37 that the work involved in
placing structural information into the public domain via
traditional methods is now relatively time consuming by
comparison with the time taken for crystal structure analysis,
thus limiting the number of structures that can ultimately be
archived to the databases. It is appropriate that the crystal-
lographic community is seeking ways to improve this situation.
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